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Systems Sciences: What do they study?

Systems sciences 
study complex systems in nature and society
• Behavior/Dynamics: State of system changes
• Structure: Components & interconnections
• Environment: Inputs & outputs
• The system is more than the sum of its parts

Systems biosciences: Study biological systems
• Systems ecology (macro-scale; populations)
• Systems biology (micro- to meso-scale; molecular to 

organismal)



Systems Sciences: How do they do it? 

A key concept/tool in systems sciences: 

Model of the system: 
Simplified (formal) representation of the system

The use of models

Understanding  the system studied
• Structure (components, connections) 
• Behavior
Predicting the behavior of the system 
Achieving desired behavior



Systems Sciences: The tasks 

The central task in systems sciences: 

Modeling:  Constructing a model of the studied system, in  
a given formalism, including structure and parameters
Typically done manually by an expert or a team thereof

Related tasks in systems sciences:

Analysis: Given model; examine possible behaviors 
How model parameters/structure influence behavior 
Identification: Given observed behavior; generate model
Control: Given model, desired outputs; generate inputs
Design: Given desired behavior, generate model



The diversity of Systems Sciences: 
System representation and modeling formalisms

The model of a system describes how the system state 
changes/evolves over some context

Context space: time/space/space-time (discr./cont.)

State space: System variables (discrete vs. continuous) 

Evolution rules: 
• Deterministic (one possible evolution in time, 

approximates avg. behavior of system)
• Stochastic (closer correspondence with nature, e.g. 

discrete/small number of molecules and stoch. react.))

The prototypical case: systems of ODEs 



Two Models of Dynamic Systems: 
An abstract and a real-world example

• The Lorenz system: Atmospheric convection

• Lotka-Volterra: Predator-prey interaction in ecology



Systems Sciences: The challenge

Complexity of systems studied increases

The models that are used in systems sciences are mostly 
constructed manually

Manual modeling is a knowledge-intensive, 
time-consuming (and thus expensive) task 

This represents a bottleneck in the further development 
of systems sciences 



The Knowledge-Driven Modeling Paradigm

In knowledge-driven (theoretical) modeling:

1. Expert derives a proper model (structure)
– Based on domain-specific knowledge and
– Knowledge of modeling formalism

2. Typically, both the structure and parameters of the 
models are derived by the expert from 

– Knowledge about processes (e.g., bear reproduction) 
– Knowledge about process rates/parameters (e.g., birth 

rates = average number of cubs/litter)



Data-Driven Modeling: An Example

• Input: Observed behavior of dynamic system

• Output: Set of ordinary differential equations(ODEs) 



Learning Models of Dynamic Systems: 
A Real-world Example from Ecology

• Input: Observed behavior of dynamic system

• Output: Set of ordinary differential equations(ODEs) 



Learning Models of Dynamic Systems: 
The task

• Given example behavior(s) of a dynamic system
– Measurements of system variables
– Over the course of time

• Find a set of ODEs (structure and parameters)
• That describe the dynamics of the system              

(fit the observed behavior(s))



The Data-Driven Modeling Paradigm

In data-driven (empirical) modeling:

1. (Many) Different model structures (from a given 
class) are considered in a trial& error fashion

2. A model = structure + parameter values that fits the 
data best is returned 

System identification typically 
• Fixes the models structure, finds the parameters 

(parameter identification)
• Considers linear model structures



Data-Driven  or Knowledge-Driven Modeling?

In knowledge-driven (theoretical) modeling:
• A lot of domain knowledge is needed, but
• Little (if any) data are needed and 
• The result is an understandable model that makes 

sense from the domain point of view

In data-driven (empirical) modeling:
• A lot of data of good quality are needed, but
• Little (if any) domain knowledge is needed 
• However, the result is most often a model that makes 

no sense from the domain point of view (or is even 
not understandable)



Data-and-Knowledge-Driven Modeling!

• We would like to have the best of both worlds and 
integrate knowledge- and data-driven modeling

• We would like to flexibly trade-off between data and 
domain knowledge and handle
– Lots of knowledge and little data or
– Lots of data and little knowledge, as the case may be

• We would like to have models that fit the data well

• But are also understandable and make sense from the 
domain point of view



Data-and-Knowledge-Driven Modeling!

To integrate knowledge-driven and data-driven 
modeling,  we will need

• A formalism for representing models and domain 
knowledge
– The formalism has to be powerful and allow precise 

modeling and simulation of dynamic system
– It has to be understandable

• Methods for learning models from domain knowledge 
and data 
– That will take data and domain knowledge as input
– Will produce accurate models in the formalism, and fast



Knowledge Representation: Dynamic Systems

Dynamic systems consist of
• Entities and
• Processes

These are very general notions and key concepts in 
ontological representations of the world

E.g., the Basic Formal Ontology is a framework that 
consists of a number of ontologies that describe
• Continuants, i.e., entities
• Occurents, i.e., processes



Our formalism: Process-Based Models

Process-based models have two major components 
• Entities and
• Processes

Entities participate in processes

Each process-based model, consisting of completely 
specified processes, corresponds to a system of ODEs

The Es and Ps specify the qualitative aspect of the model
The ODEs specify the quantitative aspect of the model



Process-based Models (PBM)

• Integrate two aspects of equation-based models
– Quantitative aspect: ODEs with given structure and 

parameter values that allow simulation

– Qualitative aspect: explanation of the structure of the 
modeled systems in terms of entities and processes

• In equations: Variables correspond to entities, terms 
correspond to processes
– Exponential growth of hare population
– Exponential loss of fox population
– Predator-prey interaction between the two species



PBM: Qualitative Aspect

fox hare

predator-preyloss growth



PBM: Quantitative Aspect

fox hare

predator-prey
d hare / dt = -
0.35×hare×fox
d fox / dt = 0.03×hare×fox

loss
d fox / dt = -1.2×fox  

growth
d hare / dt = 
2.5×hare



Entities in Process-Based Models

Entities (e.g., person) have as properties constants (e.g., 
gender) and variables (e.g., weight or height)
The latter have an initial value that changes over time

The variables appear in (OD) equations: Their role
determines whether they are endogenous (system) vars. 
or exogenous (input) variables
Entities participate in processes and are influenced by 
them. Agg. Function = How influences are combined



Processes in Process-Based Models
Processes have entities as participants, which they 
influence

Besides participants, processes have equations, which 
specify their kinetic rates, and sub-processes

Each process contributes a term to the (OD) equations for 
the variables of each participating entity



Process-based models



Process-based models



Process-based models



Process-based models



Process-based models



Process-based models



Process-based models



Process-based models



Process-based models



Process-based models
Entities



Process-based models
Entities

Processes



Process-based models



Process-based models



The Syntax of Process-Based Models: 
Entities

• Three entities in an aquatic ecosystem



The Syntax of Process-Based Models: 
Processes

• A process with two sub-processes connecting the 
three entities in an aquatic ecosystem



The Qualitative Structure of the PMB



The Quantitative Structure of the PMB



Domain Knowledge for Process-Based Modeling

• Some entities (and processes) are very similar
– have the same properties
– have properties that have the same pattern

• Extract these common properties into higher level 
concepts,  called templates

• Templates
– are partial/incomplete specifications that capture 

common information
– Entity Templates 
– Process Templates 

• Templates are organized into hierarchies



Entity Templates Hierarchy

EcosystemEntity

conc

PrimaryProducer

limitation

maxGrowthRate

maxLossRate

sedimentationRate

halfSaturationConst

Nutrient

halfSaturationConst

Zooplankton

zooLimitation

maxIngestionRate

maxFiltrationRate

maxLossRate

assimilationCoeff



Process Templates Hierarchy



Libraries of Domain Knowledge

• A catalogue of kinds of entities and processes 
encountered in the domain of discourse

• Template entities/ processes

• Hierarchies of entities and processes

• Mathematical formulations of processes
– Equation fragments
– Alternative formulations allowed



Hierarchies of Species and Processes

• Taxa (Species, Genera, …)
– Primary producers
– Consumers

• Processes
– Single spec.
– Interactions

Population 
dynamics

Growth

Unlimited 
growth

Logistic 
growth

Loss

Interaction

Predator-
Prey

Unlimited 
predation

Limited 
predation

Symbiosis

Competitive 
Exclusion

Consists-Of

Alternatives

OptionalOptional



Learning PBMs: Inductive Process Modelling

• Input: Observed behavior+ Task+ Template processes

• Output: Instance processes + ODEs



Modeling Task Specification

• Specifies the entities present in the system, as well as 
the measurements available and their relation to the 
entities

• Specifies high-level processes expected to take place
• Allows for flexible use of the domain knowledge in 

the library

• For example, we can have quite a complete task 
specification, leaving only constant parameters to fit

• Or, we can have very high-level processes, requiring 
the search through a large set of combinations of 
alternative formulations for each of these



A Machine Learning Approach to 
Learning Models of Dynamic Systems

• Heuristically search the space of possible 
model structures

– What is the space? 
• The space of structures considered is defined by the 

task specification and library of domain knowledge 
(template entities and processes)

– What is the heuristic?
• Takes error/degree of fit to the observed behavior(s) 

into account, possibly additional factors (such as 
model complexity) 



A machine learning approach to IPM

• Consider different sets of (high-level) processes

• Consider different sub-processes and 
alternative model formulations
for each process: 
These correspond to different ODE structures

• To evaluate candidate model structures
– Parameters are calibrated (nonlinear optimization)
– Goodness of fit between measured and simulated 

values is considered



IPM: Direct Search for Process Models

• Consider different sets of (high-level) processes

• Consider different sub-processes and 
alternative model formulations
for each process: 
These correspond to different ODE structures

• To evaluate candidate model structures
– Parameters are calibrated (nonlinear optimization)
– Goodness of fit between measured and simulated 

values is considered



IPM: Generate Models

fox hareinteraction§

fox harepredator-
prey§

fox haresymbiosis§

fox harecompetitive 
exclusion§

fox hareunlimited 
predation§

fox harelimited
predation§

Interaction

Predator-
Prey

Unlimited 
predation

Limited 
predation

Symbiosis

Competitive 
Exclusion



IPM: Generate Models (2)

fox hareunlimited 
predation§growth

Growth

Unlimited Unlimited 
growth

Logistic 
growth

fox hareunlimited 
predation§

unlim. 
growth

fox hareunlimited 
predation§

log. 
growth

etc.



ProBMoT: A SW Platform for IPM

• Process-Based Modeling Tool (D. Čerepnalkoski) 
• Given library of domain knowledge, conceptual 

model (task specification), measured data
• Generates (exhaustively) model structures
• Fits model parameters and 
• Finds best candidate (process-based) model(s)



Parameter Estimation in ProBMoT
• Supports the use of different optimization methods for 

parameter fitting (incl. gradient descent with RRRs) 
– ACO/DASA, Differential Evolution, Multi-objective DE

• Supports the use of different fitness functions (and not 
just sum of squared errors)



ProBMoT: More accurate workflow



Recent Advances in IPM Methods

Meta-heuristic optimization for parameter estimation: 
• Different and multiple objective functions
• Different optimization methods from a general library

Formalism(s) for representing domain knowledge: 
Stochastic reaction models

Search model structures: Heuristic (evolutionary) search 

Learning ensemble ODE models: Bagging/Boosting IPMs

Meta-learning about IPM: Learning constraints on models



Application areas
• Systems Ecology
• Systems Biology 
• Synthetic Biology

Systems Ecology
• Population ecology, esp. population dynamics
• Mostly for aquatic ecosystems
• Library of domain knowledge (Atanasova et al. 2006)
• Used for modeling many different aquatic ecosystems

– Lakes
– Lagoon
– Sea 

Applications of Inductive Process Modeling



• An overview of entities and processes in the library

Knowledge for Modeling Aquatic Ecosystems

INORGANIC PRIMARY PRODUCER

ANIMAL

DETRITUS

TEMPERATURE

LIGHT

INCOMING
NUTRIENTS

INPUT 
(INDEPENDENT
VARIABLES)

DISSOLVED
ORGANIC MATTER

SEDIMENT

OUTPUT

I1

I2

1

4
2

5

3

4

5

6

6

1   Growth of primary producer
2   Respiration
3   Grazing = predator growth
4   Mortality
5   Excretion
6   Sedimentation
7   Transformation of an inorganic 

nutrient to another inorganic form
8   Release of nutrients from sediment
9   Decomposition
10 Hydrolysis
11 Mixing

7

8

9

9

10

VOLUME
DEPTH
WIND
PRECIPITATION



Knowledge for Modeling Aquatic Ecosystems



Modeling Aquatic Ecosystems

Venice lagoon

Ross sea, Antarctica

Lake Glumsoe, Denmark



Lake ecosystems

– Lake Bled

– Lake Kasumigaura

– Lake Greifensee, Switzerland
– Lake Kinneret, Israel
– Lake Zurich, Switzerland

Automated Modeling of Lake EcoSystems



Systems Biology: 
‘Reconstructing’ Biological Networks

• Reconstructing networks is of central interest in SB
– Formulating network models 
– That capture the dynamics of the studied systems
– From time course data

• Need to determine structure and dynamics of the net
– Structure (nodes/species, arcs/reactions)
– Dynamics: behavior in time, captured by ODEs 

• Functional form of ODEs, including reaction rates (e.g., 
Michaelis-Menten vs. Hill kinetics)

• Constant parameters in the ODE (e.g., kinetic or reaction 
rates constants, e.g., 
dP / st = reaction_rate × S × S / (S + modulation_rate)



‘Reconstructing’ Biological Networks

• Structure

• Dynamics



Input
• Domain knowledge (partial models, basic processes)
• Time course data 

Output: Network structure (links) and dynamics (ODEs)

‘Reconstructing’ Networks is an IPM task

G6P

F6P F1,6BP

2 DHAP

3PGG3P



Metabolic Networks: Library for IPM

• Entities = chemical compounds

• Processes = chemical reactions

• Entities can have different roles in reactions
– Substrates are input compounds
– Products are output compounds
– Modulates are enzymes that activate/inhibit the reaction



Types of Reactions in Reaction Networks

• Irreversible

• Inhibition

• Activation

• Reversible



Modeling Knowledge for Metabolic Networks

Metabolic 
network

Flow

Inflow

Outflow

Reaction

Irreversible

Not 
moderated

Activated

Inhibited

Reversible

Not 
moderated

Activated

Inhibited

Consists-Of

Alternatives

OptionalOptional



Template Processes: Irreversible

• template process Irreversible_not_modulated
– variables S{compound}, P{compound}
– constants reaction_rate(0, Inf)
– equations

• dS / dt = –1 × reaction_rate × S
• dP / st = reaction_rate × S

• template process Irreversible_activated
– variables S{compound}, P{compound}, M{compound}
– constants reaction_rate(0, Inf), modulation_rate(0, Inf)
– equations

• dS / dt = –1 × reaction_rate × S × S / (S + modulation_rate)
• dP / st = reaction_rate × S × S / (S + modulation_rate)



Example Application: Glycolisys

• Inducing (partial) chemical network of glycolisys
– Data: temporal responses of species to pulse changes 

(14 time points)
– From: Torralba et al. (2003) PNAS 100(4): 1494-1498

• Responses of six chemical compounds:
– G6P (glucose 6-phosphate)
– F6P (fructose 6-phosphate)
– F1,6BP (fructose 1,6-bisphosphate)
– G3P (glycerol 3-phosphate)
– 3PG (3-phosphoglycerate)
– DHAP (dihydroxyacetone 3-phosphate)

• Library of domain knowledge as above



Induced Glycosis Network

G6P

F6P F1,6BP

2 DHAP

3PGG3P



Apps in SB/Glycolisys:
Measured and predicted



Systems Biology: 
Modelling phagocytosis

• The endocytic/phagocytic pathway



Endosome maturation

• Early endosomes: pH 6.0-6.5, rich in Rab5, EEA1, 
syntaxin 13, endobrevin, PI(3)P

• Late endosomes: pH 5.0-6.0, rich in Rab 7, M6PR, 
VAMP7, syntaxin 7, vATPase, LAMP-1/-2, 
lusosbisphospatidic acid

• Endosome maturation: early -> late endosome
– Rab conversion crucial in the process 

(Rab5 to Rab7)
– Expected behavior: switch from high Rab5/low Rab7 to 

low Rab5/high Rab7
• Different possible switches: toggle vs. cut-out



The GTPase modeling library: Processes

PP-interaction-
network

self-regulation
(P)

self-activation

Michaelis-
Menten

Hill

…

self-inhibition

Michaelis-
Menten

…

interaction
(P1,P2)

activation …

inhibition …

Consists-Of

Alternatives

Optional



The Data



Modeling endosome maturation



Model by del Conte Zerial et al. and 
alternative proposed by ProBMoT

• Criteria: RMSE and BIC (Bayesian Information Crit.)

• The structures (dCZ left, ProbMoT right)



Systems vs. Synthetic Biology

Systems Biology: Re-constructing biological networks
• From observed behavior
• Reverse engineering

Synthetic biology: Constructing biological circuits (nets) 
• That would produce desired behavior
• Design / engineering of biological circuits

What is common to both?
• The use of models of the dynamics of the circuits
• To investigate (in-silico) the behavior of the circuits



IPM for Synthetic Biology

• No observed data. Instead, formalized expected behavior in 
the form of custom objective functions

• Multi-objective optimization needed
• Model parameters are fitted so that the candidate model 

exhibits desired behavior (objective functions)

• Input:
– Library of domain knowledge, conceptual model
– List of behavior objectives (objective functions)

• Output:
– Suitable models and corresponding sets of parameters



ProBMoT for Systems Design vs. Identification

Instead of data, formalized desired behavior in the form of 
custom design objective functions. Multi-obj. opt. needed.
• Multi-objective optimization needed



Design of biological circuits 
with complex behaviours

• Case studies: 
– Repressilator (Elowitz and Leibler)
– Coupled repressilators (Gao et al)

• Task:
– Propose  design/model of the desired circuit and its 

parameters to optimize the custom objective function
• Objective function:

– Largest Lyapunov exponent (λ1) 
as an indicator of dynamical behavior

• If λ1 = 0 the system is oscillatory
• If λ1 > 0 the system is chaotic
• If λ1 < 0 the system is stable



Case study: Repressilator
• Repressilator

– Synthetic genetic regulatory network
– 3 repressor proteins & corresponding mRNA
– Connected in a repression loop

• Objective function – minimization of the absolute value of the 
largest Lyapunov exponent (targeting oscillatory beh.)

• (i,j) varies trough (1,3),
(2,1), (3,2)

P1

P3 P2



Case study: Coupled Repressilators

• Coupled repressilators
– Two repressilators (x and y).
– Coupling represented by modifying one equation in each 

repressilator (γ – coupling strength).
• Objective function – maximization of the largest Lyapunov 

exponent (targeting chaotic behavior)



Library of domain knowledge 
for modeling neurons



Library of domain knowledge 
for modeling neurons



Hodgkin-Huxley Model

Process-based Model Ordinary Differential Equations



Iext

Hodgkin-Huxley Model



Fast-spiking Cortical Interneuron

Process-based model Ordinary Differential Equations



Iext

Fast-spiking Cortical Interneuron



Summary & Outlook

• Proposed process-based representation of models 
and domain knowledge

• Natural, understandable, ontologically grounded
• Includes both quantitative and qualitative aspects
• Proposed methods for learning process-based models

• Applications in systems biosciences: Systems ecology, 
Systems Biology, Synthetic Biology

• Summary: Automated modeling/identification, design

• Outlook: Automating Systems Sciences
Using machine learning also for analysis & control


