Inductive Process Modeling for
Learning the Dynamics of
Biological Systems

Saso Dzeroski
Department of Knowledge Technologies
Jozef Stefan Institute, Ljubljana, Slovenia




Inductive Process Modeling for
Systems Biosciences

Saso Dzeroski
Department of Knowledge Technologies
Jozef Stefan Institute, Ljubljana, Slovenia




Systems Sciences: What do they study?

Systems sciences
study complex systems in nature and society

- Behavior/Dynamics: State of system changes
. Structure: Components & interconnections

- Environment: Inputs & outputs
- The system is more than the sum of its parts

Systems biosciences: Study biological systems

- Systems ecology (macro-scale; populations)
- Systems biology (micro- to meso-scale; molecular to
organismal)




Systems Sciences: How do they do it?

A key concept/tool in systems sciences:

Model of the system:
Simplified (formal) representation of the system

The use of models

Understanding the system studied

. Structure (components, connections)
- Behavior

Predicting the behavior of the system
Achieving desired behavior




Systems Sciences: The tasks

The central task in systems sciences.

Modeling: Constructing a model of the studied system, in
a given formalism, including structure and parameters

Typically done manually by an expert or a team thereof

Related tasks in systems sciences.

Analysis: Given model; examine possible behaviors
How model parameters/structure influence behavior
Identification: Given observed behavior; generate model
Control: Given model, desired outputs; generate inputs
Design: Given desired behavior, generate model




The diversity of Systems Sciences:
System representation and modeling formalisms

The model of a system describes how the system state
changes/evolves over some context

Context space: time/space/space-time (discr./cont.)

State space: System variables (discrete vs. continuous)

Evolution rules:

- Deterministic (one possible evolution in time,
approximates avg. behavior of system)

- Stochastic (closer correspondence with nature, e.g.
discrete/small number of molecules and stoch. react.))

The prototypical case: systems of ODEs




Two Models of Dynamic Systems:
An abstract and a real-world example

- The Lorenz system: Atmospheric convection
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Systems Sciences: The challenge

Complexity of systems studied increases

The models that are used in systems sciences are mostly
constructed manually

Manual modeling is a knowledge-intensive,
time-consuming (and thus expensive) task

This represents a bottleneck in the further development
of systems sciences




The Knowledge-Driven Modeling Paradigm

In knowledge-driven (theoretical) modeling:

1. Expert derives a proper model (structure)
- Based on domain-specific knowledge and
- Knowledge of modeling formalism

2. Typically, both the structure and parameters of the
models are derived by the expert from

- Knowledge about processes (e.g., bear reproduction)

- Knowledge about process rates/parameters (e.g., birth
rates = average number of cubs/litter)




Data-Driven Modeling: An Example

- Input: Observed behavior of dynamic system
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Learning Models of Dynamic Systems:
A Real-world Example from Ecology

- Input: Observed behavior of dynamic system
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Learning Models of Dynamic Systems:
The task

- Given example behavior(s) of a dynamic system
- Measurements of system variables
— Over the course of time

Time  System variables
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- Find a set of ODEs (structure and parameters)

- That describe the dynamics of the system
(fit the observed behavior(s))




The Data-Driven Modeling Paradigm

In data-driven (empirical) modeling:

1. (Many) Different model structures (from a given
class) are considered in a trial& error fashion

2. A model = structure + parameter values that fits the
data best is returned

System identification typically

- Fixes the models structure, finds the parameters
(parameter identification)

- Considers linear model structures




Data-Driven or Knowledge-Driven Modeling?

In knowledge-driven (theoretical) modeling:
- A lot of domain knowledge is needed, but
. Little (if any) data are needed and

- The result is an understandable model that makes
sense from the domain point of view

In data-driven (empirical) modeling:
- A lot of data of good quality are needed, but
. Little (if any) domain knowledge is needed

- However, the result is most often a model that makes
no sense from the domain point of view (or is even
not understandable)




Data-and-Knowledge-Driven Modeling!

- We would like to have the best of both worlds and
integrate knowledge- and data-driven modeling

- We would like to flexibly trade-off between data and
domain knowledge and handle

- Lots of knowledge and little data or
- Lots of data and little knowledge, as the case may be

- We would like to have models that fit the data well

- But are also understandable and make sense from the

domain point of view




Data-and-Knowledge-Driven Modeling!

To integrate knowledge-driven and data-driven
modeling, we will need

- A formalism for representing models and domain
knowledge

- The formalism has to be powerful and allow precise
modeling and simulation of dynamic system

- It has to be understandable

- Methods for learning models from domain knowledge
and data

- That will take data and domain knowledge as input
- Will produce accurate models in the formalism, and fast




Knowledge Representation: Dynamic Systems

Dynamic systems consist of
- Entities and
- Processes

These are very general notions and key concepts in
ontological representations of the world

E.g., the Basic Formal Ontology is a framework that
consists of a number of ontologies that describe

- Continuants, i.e., entities
- Occurents, i.e., processes




Our formalism: Process-Based Models

Process-based models have two major components

.- Entities and
- Processes

Entities participate in processes

Each process-based model, consisting of completely
specified processes, corresponds to a system of ODEs

The Es and Ps specify the qualitative aspect of the model
The ODEs specify the quantitative aspect of the model




Process-based Models (PBM)

Integrate two aspects of equation-based models

- Quantitative aspect: ODEs with given structure and
parameter values that allow simulation
d

— hare = — 0.3 - hare - fox
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- Qualitative aspect: explanation of the structure of the
modeled systems in terms of entities and processes

In equations: Variables correspond to entities, terms
correspond to processes
of hare population
- Exponential loss of fox population
- Predator-prey interaction between the two species




PBM: Qualitative Aspect
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loss
d fox / dt = -1.2 xfox

PBM: Quantitative Aspect

predator-prey
d hare / dt = -

0.35 Xhare xfox
d fox / dt = 0.03 Xhare xfox

growth
d hare / dt =
2.5 Xhare




Entities in Process-Based Models

Entities (e.g., person) have as properties constants (e.g.,
gender) and variables (e.g., weight or height)

The latter have an /nitial value that changes over time

Role
Initial value

Aggregation function

VARIABLES

IENTITY|<
CONSTANTS

The variables appear in (OD) equations: Their role

determines whether they are endogenous (system) vars.
or exogenous (input) variables

Entities participate in processes and are influenced by
them. Agg. Function = How influences are combined




Processes in Process-Based Models

Processes have entities as participants, which they
influence

Besides participants, processes have equations, which
specify their kinetic rates, and sub-processes

Ordinary Differential Equation
EQUATIONS[Algebra\i/c Equation q

Each proces?s contributes a term to the (OD) equations for
the variables of each participating entity
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Process-based models
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Process-based models
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Process-based models
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Process-based models
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Process-based models
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Process-based models
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The Syntax of Process-Based Models:
Entities

- Three entities in an aquatic ecosystem

entity phyto {
Vars:
conc{role: endogenous; aggregation: sum; initial: 10},
nutrient Lim{aggregation: product};
consts:
maxGrowthRate = 0.5,
1
entity phosphorus {
Vars:
conc{role: endogenous; initial: 3};
consts:
halfSaturation = 0.02,
alpha = 0.1;
I
entity nitrogen {
VArs:
conc{role: exogenous};
consts:
halfSaturation = 0.2,
alpha = 0.7;




The Syntax of Process-Based Models:
Processes

- A process with two sub-processes connecting the
three entities in an aquatic ecosystem

process growth(phyto, [phosphorus, nitrogen|) {
Processes:
phosphorusLim, nitrogenLim:
equations :
td(phyto.conc) = phyto.maxGrowthRate = phyto.conc * phyto.nutrientLim,
td(phosphorus.conc) = phosphorus.alpha % phyto.maxGrowthRate # phyto.conc #
phyvto.nutrient Lim;
1
process phosphorusLim(phyto, phosphorus) {
equations:

phyto.nutrientL.im = phosphorus.conc / (phosphorus.cone + phosphorus.
halfSaturation);

process nitrogenLim(phyto, nitrogen) {
equations:
phyto.nutrientL.im = nitrogen.conc / (nitrogen.conc + nitrogen.halfSaturation);




The Qualitative Structure of the PMB
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The Quantitative Structure of the PMB

growth

td{phyto.conc) =
phytomaxGrowthRate * phyto.conc * phyto.nutnentLim

nitrogen

S
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Domain Knowledge ess—-Based Modeling

- Some entities (and processes) are very similar
- have the same properties
- have properties that have the same pattern

- Extract these common properties into higher level
concepts, called templates

- Templates
- are partial/incomplete specifications that capture

common information
- Entity Templates

- Process Templates
- Templates are organized into hierarchies




Entity Templates Hierarchy
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Process Templates Hierarchy

Growth
LogisticGrowth LimitedGrowth
[ capacity j [ alpha }
td(pp.conc) = pp.maxGrowthRate td(pp.conc) = pp.maxGrowthRate *
* pp.conc * (1 - pp.conc / capacity) pp.conc * pp.limitation

td(<n:ns>.conc) = -alpha *
pp-maxGrowthRate * pp.conc * pp.limitation

LimitationFunction

LimitationFunction
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Libraries of Domain Knowledge

- A catalogue of kinds of entities and processes
encountered in the domain of discourse

- Template entities/ processes
- Hierarchies of entities and processes

- Mathematical formulations of processes
- Equation fragments
- Alternative formulations allowed




Hierarchies of Species and Processes

- Taxa (Species, Genera, ...)
- Primary producers

- Consumers
Unlimited
- Processes growth
- Single spec. -
Logistic

Loss

- Interactions

Population
dynamics

Consists-Of {—
Alternatives ’ Interaction

Optional

growth

Unlimited

Predator- predation
Prey Limited

predation

Symbiosis

Competitive

Exclusion




Learning PBMs: Inductive Process Modelling

Input: Observed behavior+ Task+ Template processes
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Modeling Task Specification

- Specifies the entities present in the system, as well as
the measurements available and their relation to the
entities

- Specifies high-level processes expected to take place

- Allows for flexible use of the domain knowledge in
the library

- For example, we can have quite a complete task
specification, leaving only constant parameters to fit

- Or, we can have very high-level processes, requiring
the search through a large set of combinations of
alternative formulations for each of these




A Machine Learning Approach to
Learning Models of Dynamic Systems

- Heuristically search the space of possible
model structures

- What is the space?

- The space of structures considered is defined by the
task specification and library of domain knowledge
(template entities and processes)

- What is the heuristic?

- Takes error/degree of fit to the observed behavior(s)
into account, possibly additional factors (such as
model complexity)




A machine learning approach to IPM

- Consider different sets of (high-level) processes

- Consider different sub-processes and
alternative model formulations

for each process:

These correspond to different ODE structures

- To evaluate candidate model structures

- Parameters are calibrated (nonlinear optimization)

- Goodness of fit between measured and simulated
values is considered




IPM: Direct Search for Process Models

- Consider different sets of (high-level) processes

- Consider different sub-processes and
alternative model formulations

for each process:

These correspond to different ODE structures

- To evaluate candidate model structures

- Parameters are calibrated (nonlinear optimization)

- Goodness of fit between measured and simulated
values is considered




IPM: Generate Models
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IPM: Generate Models (2)
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ProBMoT: A SW Platform for IPM

. Process-Based Modeling Tool (D. Cerepnalkoski)

- Given library of domain knowledge, conceptual
model (task specification), measured data

- Generates (exhaustively) model structures
- Fits model parameters and
- Finds best candidate (process-based) model(s)
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Parameter Estimation in ProBMoT

. Supports the use of different optimization methods for
parameter fitting (incl. gradient descent with RRRs)

- ACO/DASA, Differential Evolution, Multi-objective DE

.- Supports the use of different fitness functions (and not
just sum of squared errors)
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ProBMoT: More accurate workflow

Output
specification

oty

\ foxna
o myme)

I

Candidate model
structures
-

e =

Validation

@7 W05
PROBMOTS




Recent Advances in IPM Methods
Meta-heuristic optimization for parameter estimation:

- Different and multiple objective functions
- Different optimization methods from a general library

Formalism(s) for representing domain knowledge:
Stochastic reaction models

Search model structures: Heuristic (evolutionary) search
Learning ensemble ODE models: Bagging/Boosting IPMs

Meta-learning about IPM: Learning constraints on models




Applications of Inductive Process Modeling

Application areas

- Systems Ecology
- Systems Biology
- Synthetic Biology

Systems Ecology

- Population ecology, esp. population dynamics

- Mostly for aquatic ecosystems

- Library of domain knowledge (Atanasova et al. 2006)

- Used for modeling many different aquatic ecosystems
- Lakes
- Lagoon
- Sea




Knowledge for Modeling Aquatic Ecosystems

- An overview of entities and processes in the library
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Knowledge for Modeling Aquatic Ecosystems
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Modeling Aquatic Ecosystems

Venice lagoon

bion —479.1077 - b3 (1 biomass.
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| NH3 + 1
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Ross sea, Antarctica

Lake Glumsoe, Denmark
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EcoSystems

Lake ecosystems

- Lake Bled

- Lake Kasumigaura

- Lake Greifensee, Switzerland
- Lake Kinneret, Israel
- Lake Zurich, Switzerland



Systems Biology:
‘Reconstructing’ Biological Networks

« Reconstructing networks is of central interest in SB
— Formulating network models
— That capture the dynamics of the studied systems
— From time course data

* Need to determine structure and dynamics of the net
— Structure (nodes/species, arcs/reactions)
— Dynamics: behavior in time, captured by ODEs

 Functional form of ODEs, including reaction rates (e.g.,
Michaelis-Menten vs. Hill kinetics)

« Constant parameters in the ODE (e.g., kinetic or reaction
rates constants, e.g.,

dP / st = reaction_rate x S x S/ (S + modulation_rate)




‘Reconstructing’ Biological Networks

« Structure e
Mabs-GTE Mabs-GDPFanGDI
MabshGArs
SANDII/MoONnTD
Rab7GEF
Rab7-GDP/MabGOI C_ | Rab7-GTe

Lato ondo.om.o

OO O @ M =0
- CaTly (t) t
* Dynamics 27 T4 eles—Rs(D)ea 100 + ¢
Va3 — CgTE (t)
— e e (e
d—’."'j_:, =] + vy +vg — v — Vg - ETT?(t] T(t)
/\ JR — v ¢+ Ra(t)™
/ % 5 = Uz — Uy — Vg e crom7(t)
e Swinci i metvo il T T (Cu—Rs(t)]E‘u
’ e ’ %ﬁ = V4T V0~ V5 — V6 — Us § b EClBRS (t)
—— nasrars T = "R (t))e1s
— R = L ) 1 + 5(614 7
7 T s +ve — V10 vg = c1g77(t)

Vg — Cl?RE, (t)
™Mo = ClBRT(t).




‘Reconstructing’ Networks is an IPM task

Input
« Domain knowledge (partial models, basic processes)

« Time course data
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Output: Network structure (Iiers) and dgglna“”“'rﬁuics (ODEs)




Metabolic Networks: Library for IPM

« Entities = chemical compounds
* Processes = chemical reactions

 Entities can have different roles in reactions
— Substrates are input compounds

— Products are output compounds
— Modulates are enzymes that activate/inhibit the reaction




Types of Reactions in Reaction Networks
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Modeling Knowledge for Metabolic Networks
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Template Processes. lrreversible

« template process lrreversible not_modulated
— variables S{compound}, P{compound}
— constants reaction_rate(0, Inf)
— equations
« dS/dt=-1 xreaction rate x S
« dP/st=reaction rate X S

« template process lrreversible activated
— variables S{compound}, P{compound}, M{compound}
— constants reaction_rate(0, Inf), modulation_rate(0, Inf)
— equations
e dS/dt=-1xreaction rate x S x S/ (S + modulation_rate)
e dP/st=reaction rate x S x S/ (S + modulation_rate)




Example Application: Glycolisys

 Inducing (partial) chemical network of glycolisys

— Data: temporal responses of species to pulse changes
(14 time points)
— From: Torralba et al. (2003) PNAS 100(4): 1494-1498

« Responses of six chemical compounds:
— GO6P (glucose 6-phosphate)
— F6P (fructose 6-phosphate)
— F1,6BP (fructose 1,6-bisphosphate)
— G3P (glycerol 3-phosphate)
— 3PG (3-phosphoglycerate)
— DHAP (dihydroxyacetone 3-phosphate)

 Library of domain knowledge as above




Induced Glycosis Network
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Systems Biology:

Modelling phagocytosis

 The endocytic/phagocytic pathway

Early endosome Multivesicular body Late endosome Lysosome

o @ o i
o aﬂﬁﬂ g %
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a Early b Intermediate ¢ Late d Phagolysosome
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N
LAMP2' . ool fhua
< IMicrotubules
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Endosome maturation

Early endosomes: pH 6.0-6.5, rich in Rab5, EEA1,
syntaxin 13, endobrevin, PI(3)P

Late endosomes: pH 5.0-6.0, rich in Rab 7, M6PR,
VAMP7, syntaxin 7, vATPase, LAMP-1/-2,
lusosbisphospatidic acid

Endosome maturation: early -> late endosome

— Rab conversion crucial in the process
(Rab5 to Rab7)

— Expected behavior: switch from high Rab5/low Rab7 to
low Rab5/high Rab7

Different possible switches: toggle vs. cut-out




The GTPase modeling library: Processes
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Modeling endosome maturation

Modeling
Knowledges

Modeling




Model by del Conte Zerial et al. and
alternative proposed by ProBMoT

« Criteria: RMSE and BIC (Bayesian Information Crit.)
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Systems vs. Synthetic Biology

Systems Biology: Re-constructing biological networks
 From observed behavior
* Reverse engineering

Synthetic biology: Constructing biological circuits (nets)
« That would produce desired behavior
« Design / engineering of biological circuits

What is common to both?
« The use of models of the dynamics of the circuits
« To investigate (in-silico) the behavior of the circuits




IPM for Synthetic Biology

No observed data. Instead, formalized expected behavior in
the form of custom objective functions

Multi-objective optimization needed

Model parameters are fitted so that the candidate model
exhibits desired behavior (objective functions)

Input:

— Library of domain knowledge, conceptual model

— List of behavior objectives (objective functions)

Output:

— Suitable models and corresponding sets of parameters




ProBMoT for Systems Design vs. Identification
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Design of biological circuits
with complex behaviours

« Case studies:
— Repressilator (Elowitz and Leibler)
— Coupled repressilators (Gao et al)

« Task:

— Propose design/model of the desired circuit and its
parameters to optimize the custom objective function

» Objective function:
— Largest Lyapunov exponent (A,)
as an indicator of dynamical behavior
* If A, = 0 the system is oscillatory
* If A, > 0 the system is chaotic
* If A, <0 the system is stable




Case study: Repressilator

* Repressilator
— Synthetic genetic regulatory network P1
— 3 repressor proteins & corresponding mRNA
— Connected in a repression loop P3

* Objective function — minimization of the absolute value of the
largest Lyapunov exponent (targeting oscillatory beh.)

P2

dm; N a N
dc Ty pj %o
dp;

— = —Bpi—m)

 (i,j) varies trough (1,3),
(2,1), (3,2)




Case study: Coupled Repressilators

* Coupled repressilators
— Two repressilators (x and y).
— Coupling represented by modifying one equation in each
repressilator (y — coupling strength).

* QObjective function — maximization of the largest Lyapunov
exponent (targeting chaotic behavior)

dxm, a
= =X, T + ap,
dt T+ (i, = ) :
dxm, a
= —Ym., T +a
dt 1+ (g, )" 0




Library of domain knowledge
for modeling neurons
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Library of domain knowledge
for modeling neurons

template entity membrane
consts:
C [ range: <0,1%; unit:™uF/em®*—2"};

vars:
V {aggregation:sum; unit:"mV"; range:<-100,100>};}
template entity IonCurrent ({
consts:
g { range: <0,200>; unit:"mS/cm”*-2"},
E { range: <-100, 100>; unit:"mV"};
vars:

Ic { aggregation:sum; range:<-100,100>}; 1}

template process Current ( m:membrane, iC:TIonCurrent) {}
template process ionCurrentProcess ( gP:gatingParticle) : Current({
equations:
iC.Ic = iC.g*pow(gP.gp,gp.n)*(m.V - iC.E); }

template process leakCurrent: Current{
equations:
iC.Ic = iC.g *(m.V - iC.E); }

template process membranePotential (m:membrane, iCs:IonCurrent<l,10>,
eC: ExCurrent) {
equations:
td(m.V) = (eC.I ex - <iC:iCs>.Ic)/m.C; }



Hodgkin-Huxley Model

Process-based Model Ordinary Differential Equations
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Hodgkin-Huxley Model
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Fast-spiking Cortical Interneuron

Process-based model Ordinary Differential Equations
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Summary & Outlook

- Proposed process-based representation of models
and domain knowledge

- Natural, understandable, ontologically grounded
- Includes both quantitative and qualitative aspects
- Proposed methods for learning process-based models

- Applications in systems biosciences: Systems ecology,
Systems Biology, Synthetic Biology

- Summary: Automated modeling/identification, design

- Outlook: Automating Systems Sciences
Using machine learning also for analysis & control




